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Abstract: In today’s rapidly changing and highly competitive industrial environment, a new and
emerging business model—fast fashion—has started a revolution in the apparel industry. Due to
the lack of historical data, constantly changing fashion trends, and product demand uncertainty,
accurate demand forecasting is an important and challenging task in the fashion industry. This
study integrates k-means clustering (KM), extreme learning machines (ELMs), and support vector
regression (SVR) to construct cluster-based KM-ELM and KM-SVR models for demand forecasting in
the fashion industry using empirical demand data of physical and virtual channels of a case company
to examine the applicability of proposed forecasting models. The research results showed that both
the KM-ELM and KM-SVR models are superior to the simple ELM and SVR models. They have
higher prediction accuracy, indicating that the integration of clustering analysis can help improve
predictions. In addition, the KM-ELM model produces satisfactory results when performing demand
forecasting on retailers both with and without physical stores. Compared with other prediction
models, it can be the most suitable demand forecasting method for the fashion industry.

Keywords: demand forecasting; multichannel retailing; fashion retailing; machine learning; cluster-
ing; multichannel retailing

1. Introduction

The fashion industry has evolved and greatly transformed in the past two decades [1,2].
The current developing trend is to vertically integrate the supply chain to shorten the
response time and quickly respond to customer needs. The fashion industry supply chain
has also changed from the traditional push production to pull production, and product
inventory has dropped considerably. The fast-changing and highly competitive industrial
environment has made fast fashion an important business model, setting off an affordable
fashion trend around the world.

In the fast fashion industry, accurate demand forecasting is an important and chal-
lenging task due to uncertain product demand and extremely short product life cycles.
In the past, many models have already been proposed to solve the forecasting problem
of the fashion industry. The methods generally used to construct demand forecasting
models include traditional statistical and machine learning methods [3]. Among them,
traditional statistical methods such as the autoregressive integrated moving average model
(ARIMA) or the grey method (GM) have shown good predictive performances in many
studies [4,5]. However, as pointed out in previous studies [6], the fashion industry has
highly complex data patterns, which makes it difficult for traditional statistical methods to
produce good prediction results. Compared with traditional statistical methods, machine
learning methods such as support vector regression (SVR) and extreme learning machines
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(ELMs) have been successfully applied to many sales and demand forecasting studies
without the need for model assumptions [7–11].

In the past, a common way to construct prediction models was to put all training
data into the model construction stage at once. However, putting data with different
characteristics into the model can likely produce inaccurate prediction results, so the
cluster-based hybrid prediction model is often used to improve predictions. As clus-
tering can reduce the degree of data heterogeneity, it helps improve the accuracy of
predictions [11–13]. The usage of ELM and SVR further shortens the time needed to
process highly complex demand data for the fashion industry and model construction.
Therefore, this research proposes two fast fashion industry demand forecasting models
based on clustering analysis: the prediction model that integrates k-means (KM) and ELM
(the KM-ELM prediction model) and the prediction model that integrates KM and SVR (the
KM-SVR prediction model) to meet the fast fashion industry needs of demand forecasting.

There are very few cluster-based machine learning prediction models that are applied
to demand forecasting of the fast fashion industry in the past. The framework proposed
in this study not only uses the historical sales data commonly used in forecasting related
literature as a predictor variable [9,14] but also adds meteorological data as a predictor
variable to improve the accuracy of forecasting in the fashion industry. To verify the
effectiveness of the KM-ELM and KM-SVR forecasting models proposed in this study,
we compared the performances of the simple ELM, simple SVR, proposed KM-ELM, and
proposed KM-SVR models when predicting the demand of fashion retailers with and
without physical stores.

This paper is organized as follows. The first section is the introduction. Section 2
analyzes existing literature. Furthermore, we discuss and analyze techniques used in this
study, including KM, ELM, and SVR. Section 3 provides details on the research method,
explaining the research framework, process of data collection and processing, and construc-
tion process of each model. Section 4 is empirical analysis, going through the analytical
data of the models using the process discussed in Section 3. Finally, we conclude this study
in Section 5.

2. Literature Review
2.1. Demand Forecasting in the Fashion Industry

Accurate demand forecasting can increase the profitability of retailers by improving
the operational efficiency of the supply chain and minimizing waste; inaccurate forecasting
will lead to excessive or insufficient inventory, which will affect the retailer’s profitability
and competitive position [15]. The main concept of the fast fashion industry is to contin-
uously provide fashionable products to the market, reflect the latest fashion trends, and
grasp the most popular designs currently on the market [6]. As a result, the fast fashion
industry has some unique characteristics, including the lack of historical data, demand
uncertainty, and short-term sales seasons [2].

Many studies in the past are dedicated to solving the problem of demand forecasting.
Traditional statistical models have short computation times; for instance, the ARIMA model
can build hundreds of historical data points in a few seconds to complete a time series
forecast [16]. However, statistical methods may not perform well when the data patterns
are highly complex. Previous studies [17] have pointed out that many artificial intelligence
algorithms can be used to estimate nonlinear relationships. As an example, artificial neural
networks (ANN) are often used in sales forecasting [3]. In the related research of fast
moving consumer goods, a previous study [18] used ANN to predict the sales of women’s
clothing. Another previous study [19] applied ENN to the sales forecast of the fashion retail
industry. Although ANN and ENN models are widely used in forecasting, they require
a lengthy model-building process.

In [3], a new model called the intelligence fast sales forecasting model was proposed,
which used an ELM and traditional statistical methods such as polynomial regression. It
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suggested to use the extended extreme learning machine (ELM) when the time cost does
not exceed the limit, and use the statistical prediction model when it does.

Integration of GM and extended ELM method (EELM) was performed in [6] to form
the 3F algorithm. The study concluded that, in a limited time, the conversion of the 3F
algorithm to GM can provide fast forecast results; if the time limit is not exceeded, then the
GM-EELM model is used to perform the task of predicting.

2.2. K-Means Clustering

The main goal of clustering is to divide the collected sample data into several clusters.
Data in the same cluster exhibit higher similarity, while the similarity between data in
different clusters is low. KM clustering, a partitioning method, was proposed in [20], and
it has been widely used in clustering operations [21,22] for cluster analysis because of
its simple concept, easy operation, and fast computation time. In addition, KM applied
to forecasting also yields good performance. In [12], KM and a greedy algorithm were
combined to propose a KGA model for finding the optimal number of nodes in the hidden
layer of a back-propagating neural network. Studies have confirmed that the model has
good prediction accuracy. In [13], a new hybrid method that combined KM and a nonlinear
autoregressive (NAR) neural network to predict the total amount of solar radiation per hour
was proposed. Studies have confirmed that this method has better prediction performance
than the autoregressive moving average (ARMA) model.

2.3. Extreme Learning Machines

ELMs were proposed in [23], which is a machine learning method [24–27]. It is noted
that ELM is a single-hidden layer feedforward neural network, and its learning speed is
faster than traditional gradient learning methods [6]. The study in [28] further explains
that the construction of the network is through an acyclic feedforward connection that
connects three-layer units, where the hidden layer is used to capture the relationship
between the nonlinear input and output. Traditional learning methods need to adjust the
input weight and the deviation of the hidden layer, but the input weight and hidden layer
deviation in ELM can be randomly generated, which helps avoid the difficulties faced
when using gradient learning algorithms such as poor learning rate, local minimums, and
overfitting [3,28,29]. ELM has successfully solved prediction problems in many fields. The
study [7] used ELMs to forecast sales in the fashion retail industry and indicated that ELMs
outperformed other forecasting methods and back-propagation neural networks in this
empirical context. Similar to fast fashion retailing demand, accurate price forecasting for
electricity and crude oil is an arduous task owing to high volatility of the real-life data.
ELM-based methods have been successfully applied in the cases where their advantages
of faster learning speed with a higher generalization were taken and then highlighted.
For example, in [30], wavelet transform and an ELM were combined to develop a hybrid
wavelet based ELM (WELM) model that can be employed to electricity price forecasting.
Empirical results confirmed that wavelet-ELM has good forecasting performance in price
forecasting. The study in [10] used an ensemble empirical mode decomposition combined
with extended ELM to predict the highly volatile price of crude oil. This model is better
than simply using EELM or other ensemble learning models, and significantly improves
prediction performance.

2.4. Support Vector Regression

SVR is a machine learning technique developed based on the principle of structural
risk minimization [31]. In [32], SVR is used to forecast the sales of newspapers and
magazines, as well as obtaining an accurate forecast result.

Support vector machines (SVMs) are a machine learning method that was developed
based on structural risk minimization in statistical learning theory [31]. The study in [33]
mentions that SVMs are linear learning machines, implying that a linear function is always
used to solve regression problems. When dealing with nonlinear regression problems,
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the input vector is transformed into a high-dimensional feature space using a nonlinear
mapping function, and a linear regression is constructed on the feature space. A previous
study [34] lists many kernel functions of a support vector machine. The radial type
(RBF) kernel function should be the priority choice for the core function because the RBF
kernel function has many great characteristics. First, it can classify nonlinear and high-
dimensional data; second, it only needs to adjust C and two parameters, reducing the
operational difficulty. The final output data range between 0 and 1, and the reduction of
the range of data can reduce the computation time [35]. However, there are some cases
where the RBF kernel function is not applicable. In particular, when the number of features
is very large, only linear kernel functions can be used [35].

In [33], fuzzy theory was combined with SVM to predict the demand for perishable
agricultural products. The research results show that the prediction accuracy of an SVM is
better than that of the radial basis function neural network. The study in [36] combined the
invasive weed optimization (IWO) algorithm and SVR to develop the IWO-SVR model and
applied it to the prediction of oxygen supply. The results show that IWO-SVR has higher
prediction accuracy than SVR.

According to the above-mentioned studies, an effective supply strategy of short-lived
and quickly exhausted products is highly relied on accurate demand forecasting. SVMs
can find the global minima of structural risks in given training data and perform well due
to great generalizability in forecasting demand for agriculture perishable goods as well as
oxygen supply, and thus they are believed to be suitable for fast-fading fashion products.

3. Proposed Clustering-Based Demand Forecasting Model
3.1. Proposed Scheme

This study integrates clustering algorithm and machine-learning technique to pro-
pose a clustering-based forecasting model for fast fashion retailers to forecast the de-
mand of physical store and non-store channel, respectively. The procedure is shown
in Figure 1. According to the sales reviews on the FAST RETAILING website (https:
//www.fastretailing.com), past historical demand data and weather data, such as tempera-
ture and rainfall, are all important factors that affect the current demand particularly for
physical stores. Therefore, this study collects two time series data of demand for physical
and non-store channel.

However, most of the existing studies that focused on fashion demand forecasting
have directly used all training data to construct models without considering the extent
of the relevance between the training data and the data to be forecasted (test data) [6].
In such cases, forecasting accuracy may be reduced because the training data possibly
contain excessive data irrelevant to the test data, thereby increasing training errors. To
reduce computational time and obtain promising forecasting performance, several recent
studies have proposed using clustering algorithms to divide the whole forecasting data
into multiple clusters having consistent data characteristics before constructing forecasting
models of time series data [9,11,14].

While constructing this proposed clustering-based demand forecasting model, the
main aim in the training phase is to divide the overall training data by predictor variables
into multiple small training data partitions, each of which has its own peculiar consistent
data characteristics, and then to train individual forecasting models for different clusters.
That is, for N clusters, N forecasting models are trained. In the testing phase, the average
linkage method based on Euclidean distance is applied to measure the similarity between
the test data and every given cluster. The membership of an observation of test dataset to
the specified cluster is determined by the minimal distance. The predicted value of the test
data is obtained using the trained forecasting model corresponding to the cluster it belongs
to. To put it in a nutshell, the five steps of modelling procedure are summarized as follows:

(1) Data collection: Collect raw data and divide those data into training and testing data
sets with a ratio of approximately 9:1.

(2) Data clustering: Group the training data through the KM algorithm.

https://www.fastretailing.com
https://www.fastretailing.com
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(3) Cluster assignment: Calculate the Euclidean distance between each point of the test
data and each training data cluster center and determine the training data cluster
corresponding to each test datum by finding the shortest distance to make predictions.

(4) Model building, assessment, and assignment: Combine the machine learning method
ELM or SVR to establish a prediction model for each cluster. Determine the best
forecasting technology for each group according to performance indicators.

(5) Explainability: Propose an explanation based on the results of the KM-ELM and
KM-SVR prediction models.
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3.2. Collecting and Processing Data

This study uses data from UNIQLO, a leading brand in fast fashion, for empirical
analysis. The demand data are taken from UNIQLO’s monthly sales report, and the sales
data can also reflect the quantity of customer demand at the same period. In principle,
physical stores are classified into two types when a retailer assesses the company’s financial
performance: same-stores, which have been run for a full business year at least, and new
stores, which are newly running under 1 business year. Our research defines same-store net
demand as the net demand volume generated by the same-store; physical stores net demand is
the sum of the net demand of same-stores and new stores; non-store net demand refers to
the sum of direct mail and internet demand. In the 2019 business year, for example, the
same-store net demand is the demand generated by the same-store in the previous business
year (i.e., 1 September 2018–31 August 2019); the net demand of directly-operated stores
is the sum of the same-stores’ net demand and the demand of new stores operating for
less than one year (1 September 2018–31 August 2019). The demand data shown in the
report are the monthly percentage change over the previous year, so this study defines
the same-store net demand percentage as the same-store net demand change rate over the
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same period last year; non-store net demand percentage is the rate of change of non-store net
demand compared to the same period last year. We will refer to these data as the rate of
change of same-store net demand and non-store net demand, respectively. The definitions
of the focal variables are expressed in following equations:

Total number of physical stores = Q(S) + W(N) (1)

where Q(S) indicates the number of stores that have been run more than 1 year (at the time
being recruited in this study), referred to as same-stores and denoted as S; W(N) indicates
the number of stores that have been run less than 1 year, referred to as new-stores and
denoted as N.

Physical channel net demand = ∑q
i=1 Sit + ∑w

j=1 Njt (2)

where Sit represents the net demand in business year t generated by the ith same-store,
i = 1 . . . q; Njt represents the net demand in business year t generated by the jth new-store
j = 1 . . . w.

Non− store channel net demand = It + Mt (3)

where It represents the net demand in business year t generated by the Internet and Mt
represents the net demand in business year t generated by direct mail.

The source of the temperature and rainfall data for this study is the Japan Meteo-
rological Agency. The prefectures with the largest number of physical stores of the case
fashion company in the six regions of Japan are summarized in Table 1. Since temperature
or rainfall varies with different regions and even is inconsistent in a very small geographi-
cal area, the main city of region is considered as the representative weather observatory
due to the detailed temperature and rainfall figures unavailable for a specific area where
a physical store is located.

Table 1. The top six number of physical stores in the corresponding six Japanese regions.

Number of Physical Stores Prefecture Region City

108 Tokyo Kantō Tokyo
73 Osaka Kansai Osaka
48 Aichi Chūbu Nagoya
33 Fukuoka Kyūshū·Okinawa Fukuoka
29 Hokkaido Hokkaidō·Tōhoku Sapporo
19 Hiroshima Shikoku·Chūgoku Hiroshima

Source: Japan Meteorological Agency.

3.3. Performance Evaluation Metrics

A good prediction method must have good accuracy. In this study, mean absolute
percentage error (MAPE) and root mean squared error (RMSE), the two of most widely used
measures of forecast accuracy [37,38], are used as the performance metrics. With merits of
scale-independence and interpretability, MAPE can be comparable across different models
or research for various magnitudes. With merits of scale-independence and interpretability,
MAPE can be comparable across different models or research for various magnitudes.
MAPE is classified into four levels [39]. When MAPE is less than 10%, it implies that the
error between the actual and predicted values is considerably small and the model has
excellent predictive ability.

Rather, RMSE penalizes larger errors by giving heavier weights since errors are
squared before being averaged. RMSE is deemed to lay more stress on cost of undesirable
deviations. The smaller the values of MAPE and RMSE, the more accurate the prediction
model [37–39]. The performance evaluation formulas are as follows:
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(1) MAPE:

MAPE =
1
n
×

n

∑
i=1

∣∣∣∣Ti − Fi

Ti

∣∣∣∣× 100% (4)

(2) RMSE:

RMSE =

√
1
n
×

n

∑
i=1

(Ti − Fi)
2 (5)

where Ti is the actual value, and Fi is the predicted value.

A comparative analysis of resulting performances of all forecasting models in this
study is accordingly conducted on these two criteria to alleviate the prejudice of either of
metrics likely suffering.

4. Empirical Analysis
4.1. Empirical Data

The research data comprise two time series: monthly demand datasets of physical
store channel and non-store channel separately, retrieved from annual financial statements
of the case company for 12 years from September 2006 to August 2019 and then respectively
computed by their definitions in Section 3.2. There are 156 observations in each retailing
channel. In addition to the endogenous monthly demand data, the exogenous meteorologi-
cal data are temperature and rainfall of the six regions taken as well on the monthly basis.
Every region also has 156 points in either of temperature or rainfall datasets. To examine
the applicability and generalization of the proposed clustering-based machine learning
forecasting models, KM-SVR and KM-ELM, for demand of fast fashion retailers, the first
144 data points are used as the training sample, while the remaining 12 data points (the last
year of sampled period) are holdout and are used as the testing sample for out-of-sample
forecasting. The results of the proposed forecasting models on testing sample are compared
with those of benchmarking models based on a single machine learning algorithm such
as simple SVR and simple ELM. A model with the smallest RMSE/MAPE of the testing
sample is chosen as the one more suitable for the case of the fast fashion industry than
others for demand forecasting applied in this paper.

This study uses KM clustering in the IBM SPSS Statistics 22 software package to
construct a cluster-based model. Subsequently, the program packages elmNN and e1071 in
version 3.2.3 of R software (R core team, Vienna, Austria) are used to establish the ELM
and SVR prediction models for each cluster.

4.2. Predictor Variables

This empirical study aims to propose clustering-based demand forecasting algorithms
for fast fashion industry, which is expected to be characterized by short-lived products,
insufficient historical data of newly launched merchandise, and uncertain demand over
different phases of product life cycle. To alleviate the insufficiency of short-term data,
decisions on what predictor variables should be included in forecasting model is very
crucial to the accuracy of prediction results.

The predictor variables employed in this study have been extensively examined and
their advantageous outcomes have been shown in the related literature [9,11,14,16,18,19]. In
other words, this research is enlightened to include not merely 10 endogenous variables of
monthly demand but also exogenous weather variables such as the temperature and rainfall
of the region a retailer store is located in. It is also worth noting that the BIAS indicators,
which have been verified to increase predicting accuracy in related studies [9,14,40], are
served as the 3-of-10 endogenous variables with attempts to improve the forecasting
performance.

Here, four issues can be addressed by the manipulation of whether; 10 endogenous
variables of the two different time series, physical store and non-store channels’ demand
datasets, can be incorporated well with the 14 weather variables in the simple ELM, simple
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SVR, KM-SVR, and KM-ELM models. Through such different combinations of predictor
variables selected as inputs or not, an effective forecasting model for a given channel
demand can be identified by its better resulting accuracy than those of the other models.
In brief, Issue 1 is designated to forecast physical channel demand using 10 variables
(X1_P to X10_P), compared with 24 variables (X1_P to X24) in Issue 2. In the same vein,
issue 3 is for the non-store channel using 10 variables (X1_N to X10_N) while issue 4
involves 24 variables (X1_N to X24). Table 2 summarizes predictor variables utilized for
the four issues.

Table 2. Predictor variables.

Variables

Issue Issue 1 Issue 2 Issue 3 Issue 4

Physical Stores
Demand

Physical Stores Demand
with Meteorological Data

Non-store
Demand

Non-Store Demand with
Meteorological Data

Endogenous
variables

(X1) Rate of change in the last month
(t-1) X1_P X1_P X1_N X1_N

(X2) Rate of change in the last two
months (t-2) X2_P X2_P X2_N X2_N

(X3) Rate of change in the last six
months (t-6) X3_ P X3_ P X3_N X3_N

(X4) Rate of change of the same month
of last year (t-12) X4_ P X4_ P X4_N X4_N

(X5) Moving average of the rate of
change in the past two months (MA2) X5_p X5_ P X5_N X5_N

(X6) Moving average of the rate of
change in the past three months (MA3) X6_P X6_P X6_N X6_N

(X7) Moving average of the rate of
change in the past six months (MA6) X7_P X7_P X7_N X7_N

(X8) BIAS of the last two months (BIAS2) X8_P X8_P X8_N X8_N

(X9) BIAS of the rate of change of the
last three months (BIAS3) X9_P X9_P X9_N X9_N

(X10) BIAS of the rate of change of the
same store of the last six months (BIAS6) X10_P X10_P X10_N X10_N

Exogenous
variable

(X11) Average temperature of Sapporo X11 X11

(X12) Average temperature of Nagoya X12 X12

(X13) Average temperature of Tokyo X13 X13

(X14) Average temperature of Osaka X14 X14

(X15) Average temperature of Hiroshima X15 X15

(X16) Average temperature of Fukuoka X16 X16

(X17) Average temperate of all six
regions (average of X11 to X16) X17 X17

(X18) Average rainfall of Sapporo X18 X18

(X19) Average rainfall of Nagoya X19 X19

(X20) Average rainfall of Tokyo X20 X20

(X21) Average rainfall of Osaka X21 X21

(X22) Average rainfall of Hiroshima X22 X22

(X23) Average rainfall of Fukuoka X23 X23

(X24) Average rainfall of all six regions
(average of X18 to X23) X24 X24

Note: MA2 =
∑2

i=1 change rate of demand in month (t−i)
2 ; MA3 =

∑3
i=1 change rate of demand in month (t−i)

3 ;

MA6 =
∑6

i=1 change rate of demand in month (t−i)
6 ; BIAS2 = demand of month t−MA2

MA2 ; BIAS3 = demand of month t−MA3
MA3 ;

BIAS6 = demand of month t−MA6
MA6 , where t is the current month.

4.3. Results

This study uses ELM, SVR, KM-ELM, and KM-SVR models for demand forecasting
to find the best prediction models between them. The former two models are served
as the benchmarking for the latter two to examine the effectiveness of clustering-based
machine learning algorithms we proposed. This study uses three activation functions—
linear, sigmoid, and radial basis—in simple ELM and KM-ELM, and it uses radial and
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linear kernel functions in simple SVR and KM-SVR. The prediction results on physical
stores and non-store channels are shown below.

The authors of [23] indicated that the most important ELM parameter is the number
of hidden nodes, and ELM tends to be unstable in single run forecasting. Following the
instructions of [11,40], the ELM models with different numbers of hidden nodes varying
from 1 to 30 are constructed. For each number of nodes, an ELM model is repeated
10 times and the average RMSE and MAPE of each node is calculated. With an example
of using simple ELM for Issue 1, through automation process of model computation, the
best 6 results from the respective 6 amounts of hidden nodes are selected to emphasize in
Table 3, for the sake of limited length. Table 3 compares 6 different number of nodes of
ELM with 3 different activation functions using 10 predictor variables of physical channel.
We find that simple ELM achieves its best performance when activation function is linear,
and 10 hidden nodes are applied (MAPE = 0.44%, RMSE = 0.62) for Issue 1. The same
procedure is used for all simple ELM and KM-ELM models for all four issues.

Table 3. The number of hidden nodes and activation functions of ELMs and results for Issue 1.

Activation Function Number of Hidden Nodes MAPE RMSE

Linear Transfer Function

10 0.44% 0.62

18 0.44% 0.62

19 0.44% 0.62

20 0.44% 0.62

21 0.44% 0.62

22 0.44% 0.62

Sigmoid Transfer Function

10 9.11% 11.21

18 7.60% 9.96

19 7.96% 10.53

20 8.27% 11.01

21 9.02% 11.32

22 7.29% 9.52

Radial Basis Transfer Function

10 57.20% 73.39

18 99.99% 106.75

19 91.97% 102.20

20 85.82% 96.05

21 77.47% 89.30

22 88.61% 100.04
Note: boldface indicates the best result.

For modelling SVR, the grid search proposed by Hsu et al. [35] is a common and
straightforward method using exponentially growing sequences of C (a correction coeffi-
cient) and ε (a loss function) to identify good parameters. Taking simple SVR for Issue 1 as
example, this study tested 17 different combinations of parameters to find the best SVR
model. When radial is used for the kernel function, the best-performing parameter combi-
nation incorporates a correction coefficient of 1.05, a loss function of 0.05, and a gamma of
0.6; when linear is used for the kernel function, the superior parameter combination has
a correction coefficient of 1.05, a loss function of 0.03, and a gamma of 1.3. The results show
that simple SVR predicts better when using a linear kernel function, with MAPE = 0.42%
and RMSE = 0.59 for issue 1. The above procedure of finding best parameter set for simple
SVR and KM-SVR models is used for all four issues.
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4.3.1. Clustering-Based Prediction Model

Determining the number of clusters beforehand is a challenging task for analysts.
While no perfect mathematical criterion exists, the many heuristics available appear to rely
on the field where it is applied [41,42]. Prediction accuracy is one of common criteria to
determine the optimal cluster number (here, the parameter K for K-means algorithm). For a
retailing demand time series, K from 2 to 5 can obtain desirable clustering results [11,40,41].

Furthermore, by virtue of seasonal variation in demand for fashion products, the
number of clusters is supposed to lie in 4 (seasons) or somewhere between 2 to 5 as
well. Since prediction accuracy is a common criteria to determine the optimal cluster
number [42], a clustering-based model that generates the highest accuracy is defined as
the best forecasting model, suggesting the optimal number of clusters for this empirical
case (Issue 2 and the later Issue 4). Hence, we take the experiment on the range of clusters
between 2 and 5 using the 10 endogenous variables as the clustering variables.

Our study integrated KM with ELM as KM-ELM where different parameters were
tweaked, such as the activation function, the number of nodes, and the number of clusters.
We obtained 24 clustering-based models, as shown in Table 4. The prediction accuracy of
KM-ELM is highest when there are five clusters and linear activation function used in ELM
(MAPE = 0.13%, RMSE = 0.14). Table 5 uncovers the data distributed across the 5 clusters
of the best KM-ELM (K = 5).

Table 4. Using different activation functions in KM-ELM and the results for physical channel (Issue 1).

MAPE RMSE

Activation Function/Number
of Clusters Linear Sigmoid Radial Basis Linear Sigmoid Radial Basis

2 0.31% 6.72% 58.10% 0.38 9.02 73.80
3 0.25% 6.57% 60.55% 0.30 9.19 74.90
4 0.22% 5.73% 34.42% 0.27 7.5 46.80
5 0.13% 4.79% 42.68% 0.14 5.82 50.58

Note: boldface indicates the best result.

Table 5. Clustering results of the best KM-ELM (K = 5) for physical channel (Issue 1).

Cluster 1 Cluster 2 Cluster3 Cluster 4 Cluster 5 Total

Training data 24 66 35 11 8 144
Testing data 2 5 3 1 1 12

Total 26 71 38 12 9 156

Likewise, from Table 6, we can see that when we apply SVR after KM clustering,
using a linear kernel function yields better accuracy than using a radial kernel function for
physical channel (Issue 1). The prediction accuracy is highest when there are three clusters
for KM-SVR. Table 7 uncovers the data distributed across the 3 clusters of the best KM-SVR
(K = 3).

Table 6. Using different kernel functions in KM-SVR and the results for physical channel (Issue 1).

MAPE RMSE

Kernel Function/Number of Clusters Radial Linear Radial Linear

2 4.13% 0.33% 5.3 0.42
3 5.47% 0.21% 7.38 0.29
4 5.20% 0.24% 6.13 0.30
5 5.69% 0.23% 6.70 0.26

Note: boldface indicates the best result.
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Table 7. Clustering results of best KM-SVR (K = 3) for physical channel (Issue 1).

Cluster 1 Cluster 2 Cluster 3 Total

Training data 61 54 29 144
Testing data 5 5 2 12

Total 66 59 31 156

4.3.2. Comparison of Prediction Models

The prediction results for physical channel (Issue 1 and 2) are summarized in Table 8.
In a mere comparison of pure algorithms, which are served as the benchmarking models,
simple SVR produced lower MAPE and RMSE than those of simple ELM. More importantly,
the proposed KM-ELM and KM-SVR achieved better prediction accuracy than simple ELM,
and simple SVR. KM-ELM was the best model (MAPE = 0.13%↓, RMSE = 0.14↓) when
performing demand forecasting for Issue 1 and Issue 2 of the physical channel. Similarly,
when constructing non-store demand forecasting models for Issue 3 and Issue 4, KM-ELM
still performed the best, though by a low margin. Although RMSE of KM-ELM in Issue 4 is
higher than that of KM-SVR by 0.01, it still has the lowest MAPE, as shown in Table 9.

Table 8. Physical channel results with 10 and 24 predictor variables.

ELM SVR KM-ELM KM-SVR

10-predictor forecasting model
(Issue 1)

MAPE 0.44% 0.42% 0.13%↓ 0.21%↓
RMSE 0.62 0.59 0.14↓ 0.29↓

24-predictor forecasting model
(Issue 2)

MAPE 0.70% 0.68% 0.50%↓ 0.57%↓
RMSE 0.80 0.73 0.64↓ 0.68↓

Note: boldface indicates the best results and ↓ denotes the decreases compared with the benchmark models.

Table 9. Non-store channel results with 10 and 24 predictor variables.

ELM SVR KM-ELM KM-SVR

10-predictor forecasting model
(Issue 3)

MAPE 0.32% 0.42% 0.14%↓ 0.26%↓
RMSE 0.41 0.40 0.15↓ 0.21↓

24-predictor forecasting model
(Issue 4)

MAPE 0.31% 0.36% 0.25%↓ 0.27%↓
RMSE 0.40 0.40 0.23↓ 0.22↓

Note: boldface indicates the best results and ↓ denotes the decreases compared with the benchmark models.

It implies that the proposed KM-ELM and KM-SVR methods are applicable and more
effective for fast-fashion demand forecasting, regardless of retailing channels. Since fashion
retailers periodically launch new products or remodel the existing merchandise on the
markets to keep pace with the customer’s craze and sensation, they accordingly have to
orchestrate their marketing campaigns in a timely manner for implementation of annual
sales plans over different seasons. As a result, the demand of fashion products exhibits
similar data patterns or features at different time periods. Aligned with the inference
above, KM-ELM and KM-SVR can obtain promising forecasting performances by means
of clustering the data in several groups to reduce the likelihood that a model learns the
patterns irrelevant to the testing data in the training phase.

However, the accuracy declined slightly when the number of predictor variables
increased in a model. This could be attributable to the curse of dimensionality, which is an
interesting topic for future studies.

5. Conclusions

The effective operation of a retailer relies on demand forecasting more than other
strategic and planning decisions. An accurate demand forecast can directly affect the
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company’s profitability and competitive advantage in the market. This study uses the
demand data of fashion retailer’s physical and non-store channels as empirical data and
constructs demand forecasting models through KM clustering combined with ELMs or
SVR. The results show that KM-ELM and KM-SVR have higher prediction accuracy than
the simple ELM and SVR prediction models. This verifies the position that, once data
are sorted through clustering, the pre-processing of data homogenization can shorten
the computational time needed to construct a model and help alleviate high complexity
of demand data specific to the fashion industry. As a whole, clustering-based machine
learning forecasting models can improve predictions under time pressure.

The fast fashion industry has uncertain product demand, extremely short product life
cycles, and insufficient or incomplete historical data. However, constructing a forecasting
model using machine learning requires high quality and sufficient data during the training
process. Therefore, this study uses BIAS indicators, which are commonly used in time
series measurement models, as predictor variables, and incorporates meteorological data
as an attempt to compensate for the scarcity of data. It might be counterintuitive that the
empirical results show the forecast results using 10 demand predictor variables to be more
accurate than the forecast results using 24 demand predictor variables. We speculate that
there are a few possible reasons for this. The empirical data used in this study are the rate
of change in demand rather than the net demand and are the overall national demand
rather than a local demand, which implies that they might not be affected by the climate
of each specific region. Therefore, it is recommended that future researchers consider
other external predictor variables such as holidays (school and business), commercially
relevant events (Easter, Christmas), extraordinary events (e.g., a pandemic), and economic
conditions when predicting demand for a more specific region or different sales channels.
In addition, for the sake of obtaining more detailed managerial implications, interpretable
machine learning algorithms can be the alterative methodology in future studies.

The results of this study show that the KM-ELM model is most suitable for demand
forecasting in the fashion industry, and its superior forecasting ability makes it helpful
for the operation and management of production and sales. Fast fashion companies
can use the KM-ELM model even with limited data and under tight time constraints to
obtain an accurate prediction result that is conducive to improving company performance
management. This also enables fashion companies to achieve efficient and timely inventory
management, which reduces inventory costs for retailers by lowering the probability of
under- or overstocking.
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